Features

- EE Programmable 65,536 x 1-, 131,072 x 1-, 262,144 x 1-, 524,288 x 1-, 1,048,576 x 1- and 2,097,152 x 1-bit Serial Memories Designed to Store Configuration Programs for Altera® FLEX® and APEX™ FPGAs (Device Selection Guide Included)
- Available as a 3.3V (±10%) and 5.0V (±5% Commercial, ±10% Industrial) Version
- In-System Programmable (ISP) via 2-wire Bus
- Simple Interface to SRAM FPGAs
- Compatible with Atmel AT6000, AT40K and AT94K Devices, Altera FLEX, APEX Devices, ORCA[®] FPGAs, Xilinx[®] XC3000, XC4000, XC5200, Spartan[®], Virtex[™] FPGAs, Motorola MPA1000 FPGAs
- Cascadable Read-back to Support Additional Configurations or Higher-density Arrays
- Very Low-power CMOS EEPROM Process
- Programmable Reset Polarity
- Available 8-lead PDIP, 20-lead PLCC and 32-lead TQFP Packages (Pin Compatible Across Product Family)
- Emulation of Atmel's AT24CXXX Serial EEPROMs
- Low-power Standby Mode
- · High-reliability
 - Endurance: 100,000 Write Cycles
 - Data Retention: 90 Years for Industrial Parts (at 85°C) and 190 Years for Commercial Parts (at 70°C)
- Green (Pb/Halide-free/RoHS Compliant) Package Options Available

1. Description

The AT17A series FPGA configuration EEPROMs (Configurators) provide an easy-to-use, cost-effective configuration memory for Field Programmable Gate Arrays. The AT17A series device is packaged in the 8-lead PDIP⁽¹⁾, 20-lead PLCC and 32-lead TQFP, see Table 1-1. The AT17A series configurator uses a simple serial-access procedure to configure one or more FPGA devices. The user can select the polarity of the reset function by programming four EEPROM bytes. These devices also support a write-protection mechanism within its programming mode.

Note:

 The 8-lead LAP, PDIP and SOIC packages for the AT17LV65A/128A/256A do not have an A label. However, the 8-lead packages are pin compatible with the 8-lead package of Altera's EEPROMs, refer to the AT17LV65/128/256/512/010/002/040 datasheet available on the Atmel web site for more information.

The AT17A series configurators can be programmed with industry-standard programmers, Atmel's ATDH2200E Programming Kit or Atmel's ATDH2225 ISP Cable.

Table 1-1. AT17A Series Packages

Package	AT17LV65A/ AT17LV128A/ AT17LV256A	AT17LV512A	AT17LV010A	AT17LV002A
8-lead PDIP	Yes	Yes	Yes	_
20-lead PLCC	Yes	Yes	Yes	Yes
32-lead TQFP	_	-	Yes	Yes

FPGA Configuration EEPROM Memory

AT17LV65A AT17LV128A AT17LV256A AT17LV512A AT17LV010A AT17LV002A

3.3V and 5V System Support

AT17LV65A/128A/256A/512A/002A

8. AT17A Series Reset Polarity

The AT17A series configurator allows the user to program the polarity of the RESET/OE pin as either RESET/OE or RESET/OE. This feature is supported by industry-standard programmer algorithms.

9. Programming Mode

The programming mode is entered by bringing $\overline{SER_EN}$ Low. In this mode the chip can be programmed by the 2-wire serial bus. The programming is done at V_{CC} supply only. Programming super voltages are generated inside the chip.

10. Standby Mode

The AT17LV65A/128A/256A enters a low-power standby mode whenever nCS is asserted High. In this mode, the configurator consumes less than 50 μ A of current at 3.3V (100 μ A for the AT17LV512A/010A/002A). The output remains in a high-impedance state regardless of the state of the RESET/ $\overline{\text{OE}}$ input.

11. Absolute Maximum Ratings*

Operating Temperature40°C to +85°	С
Storage Temperature65°C to +150°	С
Voltage on Any Pin with Respect to Ground0.1V to V _{CC} +0.5	٧
Supply Voltage (V _{CC})0.5V to +7.0	V
Maximum Soldering Temp. (10 sec. @ 1/16 in.)260°0	С
ESD (R _{ZAP} = 1.5K, C _{ZAP} = 100 pF)2000	V

*NOTICE:

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those listed under operating conditions is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.

12. Operating Conditions

			3.	3V	5		
Symbol	Description		Min	Max	Min	Max	Units
V	Commercial	Supply voltage relative to GND -0°C to +70°C	3.0	3.6	4.75	5.25	V
V _{CC}	Industrial	Supply voltage relative to GND -40°C to +85°C	3.0	3.6	4.5	5.5	V

13. DC Characteristics

 $V_{CC} = 3.3V \pm 10\%$

			AT17L	AT17LV65A/ AT17LV128A/ AT17LV256A		AT17LV512A/ AT17LV010A		AT17LV002A	
Symbol	Description		Min	Max	Min	Max	Min	Max	Units
V _{IH}	High-level Input Voltage		2.0	V _{CC}	2.0	V _{CC}	2.0	V _{CC}	V
V_{IL}	Low-level Input Voltage		0	0.8	0	0.8	0	0.8	V
V _{OH}	High-level Output Voltage (I _{OH} = -2.5 mA)	0	2.4		2.4		2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Commercial		0.4		0.4		0.4	V
V _{OH}	High-level Output Voltage (I _{OH} = -2 mA)	la di alia	2.4		2.4		2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Industrial		0.4		0.4		0.4	V
I _{CCA}	Supply Current, Active Mode			5		5		5	mA
IL	Input or Output Leakage Current ($V_{IN} = V_{CC}$	or GND)	-10	10	-10	10	-10	10	μΑ
	Overal a Command Changello Manda	Commercial		50		100		150	μA
I _{CCS}	Supply Current, Standby Mode	Industrial		100		100		150	μΑ

14. DC Characteristics

 V_{CC} = 5V ± 5% Commercial; V_{CC} = 5V ± 10% Industrial

			AT17LV65A/ AT17LV128A/ AT17LV256A		AT17LV512A/ AT17LV010A		AT17LV002A		
Symbol	Description		Min	Max	Min	Max	Min	Max	Units
V _{IH}	High-level Input Voltage			V _{CC}	2.0	V _{CC}	2.0	V _{CC}	٧
V _{IL}	Low-level Input Voltage		0	0.8	0	0.8	0	0.8	V
V _{OH}	High-level Output Voltage (I _{OH} = -2.5 mA)		3.7		3.86		3.86		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Commercial		0.32		0.32		0.32	V
V _{OH}	High-level Output Voltage (I _{OH} = -2 mA)	la di alia	3.6		3.76		3.76		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Industrial		0.37		0.37		0.37	V
I _{CCA}	Supply Current, Active Mode			10		10		10	mA
Ι _L	Input or Output Leakage Current ($V_{IN} = V_{CC}$	or GND)	-10	10	-10	10	-10	10	μA
		Commercial		75		200		350	μA
I _{CCS1}	Supply Current, Standby Mode	Industrial		150		200		350	μA

17. AC Characteristics

 $V_{CC} = 3.3V \pm 10\%$

		Αī	Γ17LV65A	/128A/25	6A	AT	17LV512	A/010A/0	02A	
		Comr	nercial	Industrial		Commercial		Indu	strial	
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
T _{OE} ⁽¹⁾	OE to Data Delay		50		55		50		55	ns
T _{CE} ⁽¹⁾	CE to Data Delay		60		60		55		60	ns
T _{CAC} ⁽¹⁾	CLK to Data Delay		75		80		55		60	ns
T _{OH}	Data Hold from $\overline{\text{CE}}$, OE, or CLK	0		0		0		0		ns
T _{DF} ⁽²⁾	CE or OE to Data Float Delay		55		55		50		50	ns
T _{LC}	CLK Low Time	25		25		25		25		ns
T _{HC}	CLK High Time	25		25		25		25		ns
T _{SCE}	CE Setup Time to CLK (to guarantee proper counting)	35		60		30		35		ns
T _{HCE}	CE Hold Time from CLK (to guarantee proper counting)	0		0		0		0		ns
T _{HOE}	OE High Time (guarantees counter is reset)	25		25		25		25		ns
F _{MAX}	Maximum Input Clock Frequency	10		10		15		10		MHz

Notes: 1. AC test lead = 50 pF.

2. Float delays are measured with 5 pF AC loads. Transition is measured \pm 200 mV from steady-state active levels.

18. AC Characteristics when Cascading

 $V_{CC} = 3.3V \pm 10\%$

		AT17LV65A/		5A/128A/256A		AT.	17LV512 <i>A</i>	4/010A/00)2A	
		Comn	nercial	Indu	strial	Comm	nercial	Indu	strial	
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
T _{CDF} ⁽²⁾	CLK to Data Float Delay		60		60		50		50	ns
T _{OCK} ⁽¹⁾	CLK to CEO Delay		55		60		50		55	ns
T _{OCE} ⁽¹⁾	CE to CEO Delay		55		60		35		40	ns
T _{OOE} ⁽¹⁾	RESET/OE to CEO Delay		40		45		35		35	ns
F _{MAX}	Maximum Input Clock Frequency	8		8		12.5		10		MHz

Notes: 1. AC test lead = 50 pF.

2. Float delays are measured with 5 pF AC loads. Transition is measured \pm 200 mV from steady-state active levels.

AT17LV65A/128A/256A/512A/002A

19. AC Characteristics

 V_{CC} = 5V ± 5% Commercial; V_{CC} = 5V ± 10% Industrial

		ТА	17LV65A	/128 A /25	6A	AT.	17LV512	A/010A/0	02A	
		Comn	nercial	Industrial		Commercial		Industrial		
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
T _{OE} ⁽¹⁾	OE to Data Delay		30		35		30		35	ns
T _{CE} ⁽¹⁾	CE to Data Delay		45		45		45		45	ns
T _{CAC} ⁽¹⁾	CLK to Data Delay		50		55		50		50	ns
T _{OH}	Data Hold from $\overline{\text{CE}}$, OE, or CLK	0		0		0		0		ns
T _{DF} ⁽²⁾	CE or OE to Data Float Delay		50		50		50		50	ns
T _{LC}	CLK Low Time	20		20		20		20		ns
T _{HC}	CLK High Time	20		20		20		20		ns
T _{SCE}	CE Setup Time to CLK (to guarantee proper counting)	35		40		20		25		ns
T _{HCE}	CE Hold Time from CLK (to guarantee proper counting)	0		0		0		0		ns
T _{HOE}	OE High Time (guarantees counter is reset)	20		20		20		20		ns
F _{MAX}	Maximum Input Clock Frequency	12.5		12.5		15		15		MHz

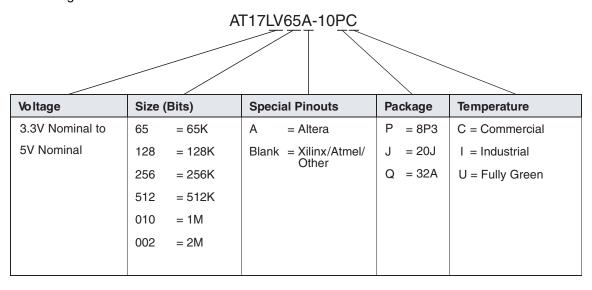
Notes: 1. AC test lead = 50 pF.

2. Float delays are measured with 5 pF AC loads. Transition is measured \pm 200 mV from steady-state active levels.

20. AC Characteristics when Cascading

 V_{CC} = 5V ± 5% Commercial; V_{CC} = 5V ± 10% Industrial

		AT17LV65A/128A/256A		6A	AT.)2A				
		Commercial		mercial Industrial		Commercial		Industrial		
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
T _{CDF} ⁽²⁾	CLK to Data Float Delay		50		50		50		50	ns
T _{OCK} ⁽¹⁾	CLK to CEO Delay		35		40		35		40	ns
T _{OCE} ⁽¹⁾	CE to CEO Delay		35		35		35		35	ns
T _{OOE} ⁽¹⁾	RESET/OE to CEO Delay		30		35		30		30	ns
F _{MAX}	Maximum Input Clock Frequency	10		10		12.5		12.5		MHz


Notes: 1. AC test lead = 50 pF.

2. Float delays are measured with 5 pF AC loads. Transition is measured ± 200 mV from steady-state active levels.

22. Ordering Information

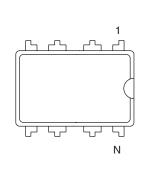
Figure 22-1. Ordering Code⁽¹⁾

Note: 1. The 8-lead LAP and SOIC packages for the AT17LV65A/128A/256A do not have an A label. However, the 8-lead packages are pin compatible with the 8-lead package of Altera's EEPROMs, refer to the AT17LV65/128/256/512/010/002/040 datasheet available on the Atmel web site for more information.

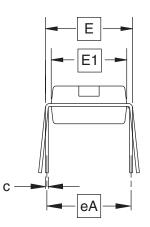
	Package Type				
8P3	8P3 8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)				
20J	20-lead, Plastic J-leaded Chip Carrier (PLCC)				
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package Carrier (TQFP)				

Standard Package Options(1) 22.1

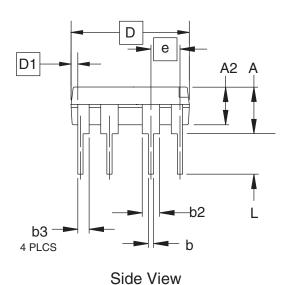
Memory Size	Ordering Code	Package	Operation Range
64-Kbit ⁽²⁾⁽⁷⁾	AT17LV65A-10JC	20J	Commercial (0°C to 70°C)
64-KDII(=/(*/	AT17LV65A-10JI	20J	Industrial (-40°C to 85°C)
128-Kbit ⁽⁷⁾	AT17LV128A-10JC	20J	Commercial (0°C to 70°C)
128-KDIL**/	AT17LV128A-10JI	20J	Industrial (-40°C to 85°C)
256-Kbit ⁽³⁾⁽⁷⁾	AT17LV256A-10JC	20J	Commercial (0°C to 70°C)
250-NDIL**/	AT17LV256A-10JI	20J	Industrial (-40°C to 85°C)
512-Kbit ⁽⁴⁾⁽⁷⁾	AT17LV512A-10PC AT17LV512A-10JC	8P3 20J	Commercial (0°C to 70°C)
512-KDIL****	AT17LV512A-10PI AT17LV512A-10JI	8P3 20J	Industrial (-40°C to 85°C)
1-Mbit ⁽⁵⁾⁽⁷⁾	AT17LV010A-10PC AT17LV010A-10JC AT17LV010A-10QC	8P3 20J 32A	Commercial (0°C to 70°C)
1-IVIDIU-7/	AT17LV010A-10PI AT17LV010A-10JI AT17LV010A-10QI	8P3 20J 32A	Industrial (-40°C to 85°C)
2-Mbit ⁽⁶⁾⁽⁷⁾	AT17LV002A-10JC AT17LV002A-10QC	20J 32A	Commercial (0°C to 70°C)
Z-IVIDIL'	AT17LV002A-10JI AT17LV002A-10QI	20J 32A	Industrial (-40°C to 85°C)


22.2 Green Package Options (Pb/Halide-free/RoHS Compliant)(1)

Memory Size	Ordering Code	Package	Operation Range
512-Kbit ⁽⁴⁾⁽⁷⁾	AT17LV512A-10JU	20J	Industrial
J12-KDIL	A117EV312A-1000	200	(-40°C to 85°C)
1-Mbit ⁽⁵⁾⁽⁷⁾	AT17LV010A-10JU	20J	Industrial
1-IVIDIL ⁽³⁾ (7)	AT17LV010A-10PU	8P3	(-40°C to 85°C)
2-Mbit ⁽⁴⁾⁽⁷⁾	AT17LV002A-10JU	20J	Industrial
Z-IVIDIL'	A117EV002A-1000	200	(-40°C to 85°C)


- Notes: 1. Currently, there are two types of low-density configurators. The new version will be identified by a "B" after the datacode. The "B" version is fully backward-compatible with the original devices so existing customers will not be affected. The new parts no longer require a MUX for ISP. See programming specification for more details.
 - 2. Use 64-Kbit density parts to replace Altera EPC1064.
 - 3. Use 256-Kbit density parts to replace Altera EPC1213.
 - 4. Use 512-Kbit density parts to replace Altera EPC1441.
 - 5. Use 1-Mbit density parts to replace Altera EPC1
 - 6. Use 2-Mbit density parts to replace Altera EPC2. Atmel AT17LV002A devices do not support JTAG programming; Atmel AT17LV002A devices use a 2-wire serial interface for in-system programming.
 - 7. For operating voltage of 5V $\pm 10\%$, please refer to the 5V $\pm 10\%$ AC and DC Characteristics.

23. Packaging Information


23.1 8P3 - PDIP

Top View

End View

COMMON DIMENSIONS

(Unit of Measure = inches)

SYMBOL	MIN	NOM	MAX	NOTE
Α			0.210	2
A2	0.115	0.130	0.195	
b	0.014	0.018	0.022	5
b2	0.045	0.060	0.070	6
b3	0.030	0.039	0.045	6
С	0.008	0.010	0.014	
D	0.355	0.365	0.400	3
D1	0.005			3
Е	0.300	0.310	0.325	4
E1	0.240	0.250	0.280	3
е	0.100 BSC			
eA	0.300 BSC			4
L	0.115	0.130	0.150	2

Notes

- 1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA for additional information.
- 2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3.
- 3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch.
- 4. E and eA measured with the leads constrained to be perpendicular to datum.
- 5. Pointed or rounded lead tips are preferred to ease insertion.
- 6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).

	TITLE	DRAWING NO.	REV.
2325 Orchard Parkway San Jose, CA 95131	8P3 , 8-lead, 0.300" Wide Body, Plastic Dual In-line Package (PDIP)	8P3	В

